Cross Product Quantisation, Nonabelian Cohomology and Twisting of Hopf Algebras
نویسنده
چکیده
This is an introduction to work on the generalisation to quantum groups of Mackey’s approach to quantisation on homogeneous spaces. We recall the bicrossproduct models of the author, which generalise the quantum double. We describe the general extension theory of Hopf algebras and the nonAbelian cohomology spaces H(H,A) which classify them. They form a new kind of topological quantum number in physics which is visible only in the quantum world. These same cross product quantisations can also be viewed as trivial quantum principal bundles in quantum group gauge theory. We also relate this nonAbelian cohomology H(H,C) to Drinfeld’s theory of twisting.
منابع مشابه
Cohomology of Hopf Algebras
Group algebras are Hopf algebras, and their Hopf structure plays crucial roles in representation theory and cohomology of groups. A Hopf algebra is an algebra A (say over a field k) that has a comultiplication (∆ : A → A ⊗k A) generalizing the diagonal map on group elements, an augmentation (ε : A → k) generalizing the augmentation on a group algebra, and an antipode (S : A → A) generalizing th...
متن کاملOn the Cohomology of a Smash Product of Hopf Algebras
A five term sequence for the low degree cohomology of a smash product of (cocommutative) Hopf algebras is obtained, generalizing that of Tahara for a semi-direct product of groups
متن کاملCohomological Dimensions of Universal Cosovereign Hopf Algebras
We compute the Hochschild and Gerstenhaber-Schack cohomological dimensions of the universal cosovereign Hopf algebras, when the matrix of parameters is a generic asymmetry. Our main tools are considerations on the cohomologies of free product of Hopf algebras, and on the invariance of the cohomological dimensions under graded twisting by a finite abelian group.
متن کاملEquivariant Cyclic Cohomology of Hopf Module Algebras
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
متن کاملHopf Algebra Extensions of Monogenic Hopf Algebras
William M. Singer has described a cohomology theory of connected Hopf algebras which classifies extensions of a cocommutative Hopf algebra by a commutative Hopf algebra in much the same way as the cohomology of groups classifies extensions of a group by an abelian group. We compute these cohomology groups for monogenic Hopf algebras, construct an action of the base ring on the cohomology groups...
متن کامل